Physical Chemistry @ Nanoscale
-Because LITTLE things can have HUGE impact
Please click on the journal citation to view or download full text:
2024
132. Synthesis and Optical Properties of Organic-Inorganic Hybrid [(18-Crown-6)K][MoOCl4(H2O)]
A. Ghosh, S. Saikia, M. S. Molokeev, A. Nag.
Chem. Asian J. 2024 (accepted)
132. Ultrabroad Near Infrared Emitting Perovskites
S. Saikia, A. Gopal, R. Rathod, A. Joshi, K. R. Priolkar, S. Saha, P. K. Santra, K. Shanmuganathan, A. Nag.
Angew. Chem. Int. Ed. 2024 (accepted)
131. Entropy-Driven Reversible Melting and Recrystallization of Layered Hybrid Perovskites
P. K. Rajput, P. Salunkhe, M. Sarma, M. Basu, A. Gopal, A. Joshi, A. S. Shingote, S. Saha, A. Rahman, A. Nag.
130. Emerging collective quantum phenomena of excitons in metal-halide perovskites
A. K. Poonia, P. Salunkhe, A. Nag, K. V. Adarsh.
129. Thermal Evolution of the Structure and Luminescence of the Hybrid-Cation-Stabilized
[(4AMTP)PbBr2]2PbBr4 Layered Perovskite
A. S. Shingote, T. Dutta, P. K. Rajput, A. Nag.
128. Roadmap on Perovskite light-emitting diodes
Z. Chen et al.
J. Phys. Photonics 2024 (accepted)
127. Unveiling Temperature-Induced Structural Phase Transition and Luminescence in Mn2+-Doped
Cs2NaBiCl6 Double Perovskite
S. Banerjee, S. Saikia, M. S. Molokeev, A. Nag.
126. Vibronically Coupled Near-Infrared Emission and Excitation from d−d Transitions of
Cs2MX6 (M = Mo/W, X = Cl/Br)
B. Mondal, A. Shinde, P. K. Rajput, H. Arfin, R. Tanwar, P. Ghosh, A. Nag.
ACS Energy Lett. 2024, 9, 819−828.
125. Superfluorescence from electron-hole plasma at moderate temperatures of 175 K
A. K. Poonia, B. Mondal, M. C. Beard, A. Nag, K. V. Adarsh.
Phys. Rev. Lett. 2024 (accepted)
124. Effect of film morphology on circular dichroism of low-dimensional chiral hybrid perovskites
U. Makhija, P. K. Rajput, P. Parthiban, A. Nag.
J. Chem. Phys. 2024, 160, 021102.
2023
123. Short-Wave Infrared Emissions from Te4+–Ln3+ (Ln: Er, Yb)-Codoped Cs2NaInCl6 Double Perovskites
H. Arfin, R. Rathod, A. S. Shingote, K. R. Priolkar, P. K. Santra, A. Nag.
Chem. Mater. 2023, 35, 17, 7133–7143.
122. Room-temperature electron-hole condensation in direct-band-gap semiconductor nanocrystals
A. K. Poonia, P. Yadav, B. Mondal, D. Mandal, P. Taank, M. Shrivastava, A. Nag, A. Agarwal, K. V. Adarsh.
Phys. Rev. Applied, 2023, 20, L021002.
121. Emissive Dark Excitons in Monoclinic Two-Dimensional Hybrid Lead Iodide Perovskites
A. Shinde, P. K. Rajput, U. Makhija, R. Tanwar, P. Mandal, A. Nag.
Nano lett. 2023, 23, 15, 6985–6993.
120. Broad Dual Emission by Codoping Cr3+ (d-d ) and Bi3+ (s-p ) in Cs2Ag0.6Na0.4InCl6 Double Perovskite
S. Saikia, A. Ghosh, A. Nag.
Angew. Chem.Int. Ed. 2023, 62, e2023076.
119. Combining π-Conjugation and Cation−π Interaction for Water-Stable and Photoconductive One-Dimensional Hybrid Lead Bromide
T. Sheikh, G. M. Anilkumar, T. Das, A. Rahman, S. Chakraborty, A. Nag.
J. Phys. Chem. Lett. 2023, 14, 7, 1870–1876
118. Rational Design of Non-Centrosymmetric Hybrid Halide Perovskites
R. Chakraborty, P. K. Rajput, G. M. Anilkumar, S. Maqbool, R. Das, A. Rahman, P. Mandal, A. Nag.
2022
117. Edge versus Interior Mn2+ Doping in 2D Layered Butylammonium Lead Bromide Perovskite Single Crystals
T. Dutta, S. Kashid, R. Hooda, T. Sheikh, A. Chowdhury, A. Nag
J. Phys. Chem. C 2022, 126, 49, 21109–21116
116. Magnetoplasmonics beyond Metals: Ultrahigh Sensing Performance in Transparent Conductive Oxide Nanocrystals
A. Gabbani, C. Sangregorio, B.Tandon, A.Nag, M. Gurioli and F. Pineider
Nano Lett., 2022, 22, 22, 9036–9044.
115. Effect of chirality on the optical properties of layered hybrid perovskite R- and S-α-methylbenzylammonium v lead iodide
T. Sheikh, S. Maqbool, P. K. Rajput, P. Mandal and A.Nag
Chem. Commun., 2022 58, 7650-7653
114. Chiral Methylbenzylammonium Bismuth Iodide with Zero-Dimensional Perovskite Derivative Structure
P. K. Rajput, A. K. Poonia, S. Mukherjee, T. Sheikh, M. Shrivastava, K. V. Adarsh , A. Nag
J. Phys. Chem. C 2022, 126, 23, 9889–9897
113. Challenges and Strategies to Design Phosphors for Future White Light Emitting Diodes
K. Panigrahi, A. Nag
J. Phys. Chem. C 2022 126, 20, 8553–8564
112. Yb3+-Doped Phenylethylammonium Lead Bromide 2D Layered Hybrid Perovskite for Near Infrared Emission
B. Mondal, A. Poovathan,T. Sheikh,A. Nag
ChemNanoMat, 2022 doi: 10.1002/cnma.202200104
111. Sb3+-Er3+-Codoped Cs2NaInCl6 for Emitting Blue and Short-Wave Infrared Radiation
S. Saikia, A. Joshi, H. Arfin, S. Badola, S. Saha, A. Nag
Angew. Chemie Int. Ed. 2022, 61, e2022016.
110. Iodine–Iodine Interactions Suppressing Phase Transitions of 2D Layered Hybrid (I-(CH2)n- NH3)2PbI4
(n = 2–6) Perovskites
R. Chakraborty, T. Sheikh, A. Nag
Chem. Mater. 2022, 34, 1, 288–296
2021
109. Colloidal Sb3+-Doped Cs2InCl5·H2O Perovskite Nanocrystals with Temperature-Dependent Luminescence A. S. Kshirsagar, H. Arfin, S. Banerjee, B. Mondal, A. Nag
J. Phys. Chem. C 2021, 125, 27671–27677
108. Intervalley polaronic biexcitons in metal halide perovskite quantum dots
A. K. Poonia, M. Shrivastava, W. J. Mir, J. Aneesh, A. Nag, & K. V. Adarsh
Phys. Rev. B 2021, 104, L161407-13
107. Third Harmonic Upconversion and Self-Trapped Excitonic Emission in 1D Pyridinium Lead Iodide
S. Maqbool, T. Sheikh, Z. Thekkayil, S. Deswal, R. Boomishankar, A. Nag, & P. Mandal
J. Phys. Chem. C 2021, 125, 22674–22683
106. “Plenty of Room” at the Interface of Hybrid Metal Halide Perovskite Single Crystals
A.Nag
Nano Lett. 2021, 21, 8529–8531
105. Origin of Luminescence in Sb3+- and Bi3+-Doped Cs2SnCl6 Perovskites: Excited State Relaxation and Spin– Orbit Coupling
H. Arfin, A. Nag
J. Phys. Chem. Lett. 2021, 12, 10002–10008
104. Mechanistic insights of hydrogen evolution reaction on quaternary earth-abundant chalcogenide Cu2BaSnS4 from first principles
R. Chakraborty, P. Ghosh
Applied Surface Science 2021, 570, 151049
103. Temperature-Dependent Photoluminescence of Hexafluorobenzene Intercalated Phenethylammonium Tin Iodide 2D Perovskite
T. Dutta, T. Sheikh, A.Nag
Chem Asian J 2021, 16, 2745-2751
102. Introducing Intermolecular Cation-π Interactions for Water-Stable Low Dimensional Hybrid Lead Halide
Perovskites
T. Sheikh, S. Maqbool, P. Mandal, A. Nag
Angew. Chemie Int. Ed. 2021, 60, 18265-18271
101. Neural Networks for Analysis of Optical Properties in 2D Layered Hybrid Lead Halide Perovskites
R. Chakraborty, T. Sheikh, P. Ghosh, A. Nag
J. Phys. Chem. C. 2021, 125, 5251–5259
100. State of the Art and Prospects for Halide Perovskite Nanocrystals
A. Dey et al
ACS Nano 2021, 15, 7, 10775–10981
99. Lead‐Free Double Perovskite Cs2AgInCl6
Z. Xia, Y. Liu, A. Nag, L. Manna
Angew. Chemie Int. Ed. 2020, 021, 60,2–14
98. Dielectric Confinement for Designing Compositions and Optoelectronic Properties of 2D Layered Hybrid Perovskite
R. Chakraborty and A. Nag
Phys. Chem. Chem. Phys. 2021, 23. 82-9
97. Mn2+‐Doped Metal Halide Perovskites: Structure, Photoluminescence, and Applicati on
B. Su, G. Zhou, J. Huang, E. Song, A. Nag, Z. Xia
Laser Photonics Rev. 2021, 15, 2000334
2020
96. Colloidal BaZrS3 Chalcogenide Perovskite Nanocrystals for Thin Film Device Fabrication
V. Ravi, S. H. Yu, P. K. Rajput, C. Nayak, D. Bhattacharyya, D. S. Chung, and A. Nag
Nanoscale. 2020, 13, 1616-1623
95. ns2 Electron (Bi3+ and Sb3+) Doping in Lead-Free Metal Halide Perovskite Derivatives
H. Arfin, A. S. Kshirsagar, J. Kaur, B. Mondal, Z. Xia, S. Chakraborty, and A. Nag
Chem. Mater. 2020, 32, 24, 10255–10267
94. Don’t Let the Lead Out: New Material Chemistry Approaches for Sustainable Lead Halide Perovskite Solar
Cells
V. Ravi, B. Mondal, V. V. Nawale, A. Nag
ACS Omega 2020, 5, 29631-29641.
93. Dual Excitonic Emission in Hybrid 2D Layered Tin Iodide Perovskites
V. V. Nawale, T. Sheikh, A. Nag
J. Phys. Chem. C 2020, 124, 21129–21136.
92. Correlation of Dielectric Confinement and Excitonic Binding Energy in 2D Layered Hybrid Perovskites using Temperature Dependent Photoluminescence
R. Chakraborty and A. Nag
J. Phys. Chem. C 2020, 124, 16177–16185.
91. CsPbBr3/ZnS Core/Shell Type Nanocrystals for Enhancing Luminescence Lifetime and Water Stability
V. K. Ravi, S. Saikia, S. Yadav, V. Nawale, A. Nag
ACS Energy Lett. 2020, 5, 1794-1796.
90. Molecular Intercalation and Electronic Two Dimensionality in Layered Hybrid Perovskites
T. Sheikh, V. Nawale, N. Pathoor, C. Phadnis, A. Chowdhury, A. Nag
Angew. Chemie Int. Ed. 2020, 59, 11653-11659.
89. Bi3+‐Er3+ and Bi3+‐Yb3+ Codoped Cs2AgInCl6 Double Perovskite Near Infrared Emitters
H. Arfin, J. Kaur, T. Sheikh, S. Chakraborty, A. Nag
Angew. Chemie Int. Ed. 2020, 59, 11307-11311.
88. Lanthanide doping in metal halide perovskite nanocrystals: spectral shifting, quantum cutting and
optoelectronic applications
W. J. Mir, T. Sheikh, H. Arfin, Z. Xia, A. Nag
87. g-C3N4: Sn - doped In2O3 (ITO) nanocomposite for photoelectrochemical reduction of water using solar light
G. S. Shanker R. A.Panchal S. Ogale A. Nag
J. Solid State Chem. 2020, 285, 121187.
86. Revealing the Band Structure of FAPI Quantum Dot Film and Its Interfaces with Electron and Hole Transport Layer Using Time Resolved Photoemission
D. Amelot, P. Rastogi, B. Martinez, C. Greboval, C. Livache, F. A. Bresciani, J. Qu, A. Chu, M. Goyal, S.-S. Chee,
N. Casaretto, X. Xu, C. Méthivier, H. Cruguel, A. Ouerghi, A. Nag, M. G. Silly, N. Witkowski, E. Lhuillier
J. Phys. Chem. C 2020, 124, 6, 3873-3880.
2019
85. Dual Excitonic Emissions and Structural Phase Transition of Octylammonium Lead Iodide 2D Layered
Perovskite Single Crystal
T. Sheikh1, A. Shinde, S. Mahamuni, A. Nag
Mater. Res. Exp. 2019, 6, 124002.
84. Synthesis and Optical Properties of Colloidal Cs2AgSb1−xBixCl6 Double Perovskite Nanocrystals
J. Chem. Phys. 2019, 151, 161101.
83. Synthesis and Near Infrared Emission of Yb Doped Cs2AgInCl6 Double Perovskite Microcrystals and
Nanocrystals
Y. Mahor, W. Mir, A. Nag
J. Phys. Chem. C. 2019, 123, 15787.
R. Chakraborty, K. M. Sim, M. Shrivastava, K. N. V. D. Adarsh, D. S. Chung, A. Nag
ACS Appl. Energy Mater. 2019, 2, 5, 3049.
T. Sheikh, A. Nag
J. Phys. Chem. C 2019, 123, 9420.
B. Tandon, A. Agrawal, S. Heo, D. J. Milliron (Angshuman not an author in the above-mentioned article)
79. Postsynthesis Mn-Doping in CsPbI3 Nanocrystals to Stabilize the Black Perovskite Phase
W. J. Mir, A. Swarnkar, A. Nag
78. Are Chalcogenide Perovskite an Emerging Class of Semiconductors for Optoelectronic Properties and Solar Cell?
A. Swarnkar, W. J. Mir, R. Chakraborty, M. Jagadeeswararao, T. Sheikh, A. Nag
Chem. Mater. 2019, 31, 565.
2018
77. Possible Dual Bandgap in (C4H9NH3)2PbI4 Layered Perovskite: Single Crystal and Exfoliated Few-Layer
T. Sheikh, S. Shinde, S. Mahamuni, A. Nag
ACS Energy Lett. 2018, 3, 2940.
76. Post-Synthesis Doping of Mn and Yb into CsPbX3 (X=Cl, Br, I) Perovskite Nanocrystals for Downconversion Emission
W. J. Mir, Y. Mahor, A. Lohar, M. Jagadeeswararao, S. Das, S. Mahamuni, A. Nag
75. 2D nanocomposite of g-C3N4 and TiN Embedded N-Doped Graphene for Photoelectrochemical Reduction of Water using Sunlight
G. S. Shanker, R. Bhosale, S. Ogale, A. Nag
Adv. Mater. Interface. 2018, 5, 1801488.
74. Ultrafast exciton many-body interactions and hot-phonon bottleneck in colloidal cesium lead halide perovskite nanocrystals
A. Mondal, J. Aneesh, V.K. Ravi, R. Sharma, W.J. Mir, M.C. Beard, A. Nag, K.V. Adarsh
Phys. Rev. B 2018, 98, 115418.
73. Initiation and future prospects of colloidal metal halide double-perovskite nanocrystals:
Cs2AgBiX6 (X= Cl, Br, I)
V.K. Ravi, N. Singhal, A. Nag
J. Mat. Chem. A. 2018, 6, 21666.
72. Hierarchical Arrays of Cesium Lead Halide Perovskite Nanocrystals through Electrophoretic Deposition
V.K. Ravi, R.A. Scheidt, J. DuBose, P.V.Kamat (Angshuman is not an author in this manuscript)
J. Am. Chem. Soc. 2018, 140, 8887.
71. Low-Bandgap Cs4CuSbCl12 layered Double Perovskite: Synthesis, Reversible Thermal Changes and Magnetic Interaction
N. Singhal, R. Chakraborty, P. Ghosh, A. Nag
Chem.-Asian J. 2018, 13, 2085.
70. Synthesis and Luminescence of Mn-Doped Cs2AgInCl6 Double Perovskite
N. N. K, A. Nag
69. Synthesis and Optical Properties of Colloidal M3Bi2I9 (M = Cs, Rb) Perovskite Nanocrystals
J. Pal, A. Bhunia, S. Chakraborty, S. Manna, S. Das, A. Diwan, S. Datta, A. Nag
J. Phys. Chem. C 2018, 122, 10643.
68. To Exchange or Not to Exchange. Suppressing Anion Exchange in Cesium Lead Halide Perovskites with
PbSO4-Oleate Capping
V. K. Ravi, R. A. Scheidt, A. Nag, M. Kuno, and P. V. Kamat
ACS Energy Lett. 2018, 3, 1049.
67. Ligand Engineering to Improve the Luminance Efficiency of CsPbBr3 Nanocrystal Based Light Emitting Diodes
N. K. Kumawat, A. Swarnkar, A. Nag, D. Kabra
J. Phys. Chem. C 2018, 122, 13767.
66. Strategy to overcome recombination limited photocurrent generation in CsPbX3 nanocrystal arrays
W. J. Mir, C. Livache, N. Goubet, B. Martinez, A. Jagtap, A. Chu, N. Coutard, H. Cruguel, T. Barisien, S. Ithurria,
A. Nag, B. Dubertret, A. Ouerghi, M. G. Silly, E. Lhuillier
Appl. Phys. Lett. 2018, 112, 113503.
65. Can B-Site Doping or Alloying Improve Thermal- and Phase-Stability of All-Inorganic
CsPbX3 (X = Cl, Br, I) Perovskites?
A. Swarnkar, W. J. Mir, A. Nag
ACS Energy Lett. 2018, 3, 286.
64. Internal Heterostructure of Anion-Exchanged Cesium Lead Halide Nanocubes
A. Haque, V. K. Ravi, G. S. Shanker, I. Sarkar, A. Nag, P. K. Santra
J. Phys. Chem. C 2018, 122, 10643.
63. Phase Stabilized α‐CsPbI3 Perovskite Nanocrystals for Photodiode Applications
K.M. Sim, A. Swarnkar, A. Nag, D.S. Chung
Laser Photonics Rev. 2018, 12, 1700209.
2017
62. Size-Induced Enhancement of Carrier Density, LSPR Quality Factor, and Carrier Mobility in Cr-Sn Doped ............. .In2O3 Nanocrystals
B. Tandon, A. Yadav, D. Khurana, P. Reddy, P. K. Santra, A. Nag
61. Origin of the Substitution Mechanism for the Binding of Organic Ligands on the Surface of CsPbBr3 .............. Perovskite Nanocubes
V. K. Ravi, P. K. Santra, N. Joshi, J. Chugh, S. K. Singh, H. Rensmo, P. Ghosh, A. Nag
J. Phys. Chem. Lett. 2017, 8, 4988.
60. Colloidal Synthesis and Photophysics of M3Sb2I9 (M = Cs and Rb) Nanocrystals: Lead-Free Perovskites
J. Pal, S. Manna, A. Mondal, S. Das, K. V. Adarsh, A. Nag
Angew Chem. Int. Ed. 2017, 56, 14187.
59. Colloidal Nanocomposite of TiN and N-Doped Few-Layer Graphene for Plasmonics and Electrocatalysis
G. Shiva Shanker, G. B. Markad , M. Jagadeeswararao, U. Bansode, A. Nag
ACS Energy Lett. 2017, 2, 2251.
58. Electronic properties of (Sb;Bi)2Te3colloidal heterostructured nanoplates down to the single particle level
W. J. Mir, A. Assouline, C. Livache, B. Martinez, N. Goubet, X. Z. Xu, G. Patriarche, S. Ithurria, H. Aubin, E. ................Lhuillier (Angshuman not an author in the mentioned article)
57. Terahertz Spectroscopic Probe of Hot Electron and Hole Transfer from Colloidal CsPbBr3 Perovskite Nanocrystals
S. Sarkar, V. K. Ravi, S. Banerjee, G.R. Yettapu, G.B. Markad, A. Nag, P. Mandal
Nano Lett. 2017, 17, 5402.
56. Colloidal Thallium Halide Nanocrystals with Reasonable Luminescence, Carrier Mobility and Diffusion Length
W. J. Mir, A. Warankar, A. Acharya, P. Mandal, A. Nag
Chem. Sci. 2017, 8, 4602.
55. Beyond Colloidal Cesium Lead Halide Perovskite Nanocrystals: Analogous Metal Halides and Doping
A. Swarnkar, V. K. Ravi, A. Nag
ACS Energy Lett. 2017, 2, 1089.
54. Ultrafast Exciton Dynamics in Colloidal CsPbBr3 Perovskite Nanocrystals: Biexciton Effect and Auger
Recombination
J. Aneesh, A. Swarnkar, V. K. Ravi, R. Sharma, A. Nag, K. V. Adarsh
J. Phys. Chem. C 2017, 121, 4734.
53. Colloidal Mn-Doped Cesium Lead Halide Perovskite Nanoplatelets
W. J. Mir, M. Jagadeeswararao, S. Das, A. Nag
ACS Energy Lett. 2017, 2, 537.
52. Luminescence, Plasmonic and Magnetic Properties of Doped Semiconductor Nanocrystals: Current Developments and Future Prospects
N Pradhan, S. D. Adhikari, A. Nag, D. D. Sarma
Angew. Chem. Int. Ed. 2017, 56, 7038.
2016
51. Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics
A. Swarnkar, A. R. Marshall, E. M. Sanehira, B. D. Chernomordik, D. T. Moore, J. A. Christians, T. Chakrabarti,
J. M. Luther (Angshuman not an author in the mentioned article)
Science 2016, 354, 92.
50. Band Edge Energies and Excitonic Transition Probabilities of Colloidal CsPbX3 (X= Cl, Br, I) Perovskite Nanocrystals
V. K. Ravi, G. B. Markad, A. Nag
ACS Energy Lett. 2016, 1, 665.
49. Reduction of Mn3+ to Mn2+ and Near Infrared Plasmonics from Mn-Sn codoped In2O3 Nanocrystals
A. Yadav, B. Tandon, A. Nag
RSC Adv. 2016, 6, 79153.
48. Defect-Mediated Electron-Hole Separation in Colloidal Ag2S-AgInS2Hetero Dimer Nanocrystals Tailoring Luminescence and Solar Cell Properties
M. Jagdesswararao, A. Swarnkar, G. B. Markad, A. Nag
J. Phys. Chem. C 2016, 120, 19461.
47. THz conductivity within colloidal CsPbBr3 perovskite nanocrystals: remarkably high carrier mobilities and
large diffusion lengths
G. R. Yettapu, D. Talukdar, S. Sarkar, A. Swarnkar, A. Nag, P. Ghosh, P. Mandal
Nano Lett. 2016, 16, 4838.
46. Excellent green but less impressive blue luminescence from CsPbBr3 perovskite nanocubes and
nanoplatelets.
VK Ravi, A. Swarnkar, R. Chakraborty, A. Nag
Nanotechnology 2016, 27, 325708.
45. Delocalized Electrons Mediated Magnetic Coupling in Mn-Sn codoped In2O3 Nanocrystals: Plasmonics shows the way.
B. Tandon, A. Yadav, A. Nag
Chem. Mater. 2016, 28, 3620.
44. Hybrid Perovskite Quantum Nanostructures Synthesized by Electrospray Antisolvent-Solvent Extraction and Intercalation.
Naphade, R.; Nagane , S.; Shanker, G.S.; Fernandes, R.; Kothari, D. C.; Zhou, Y.; Padture, N.P.; Ogale, S.B.
(Angshuman not an author in the mentioned article)
ACS Appl. Mater. Interfaces, 2016, 8, 854.
43. Electrical and Plasmonic Properties of Ligand-Free Sn4+-Doped In2O3 (ITO) Nanocrystals
M Jagadeeswararao, S Pal, A Nag, D.D. Sarma
ChemPhysChem, 2016, 17,710-716.
2015
42. Colloidal CsPbBr3 Perovskite Nanocrystals: Luminescence beyond Traditional Quantum Dots
A. Swarnkar, R. Chulliyil, V. K. Ravi, M. Irfanullah, A. Chowdhury, A. Nag
Angew. Chem. Int. Ed. 2015, 54, 15424.
41. Origin of Unusual Excitonic Absorption and Emission from Colloidal Ag2S Nanocrystals: Ultrafast Photophysics and Solar Cell
W. J. Mir, A. Swarnkar, R. Sharma, A. Katti, K. V. Adarsh, A. Nag
J. Phys. Chem. Lett. 2015, 6, 3915.
40. Colloidal Transparent Conducting Oxide Nanocrystals: a new infrared plasmonic material
B. Tandon, A. Ashok, A. Nag
Pramana 2015, 84, 1087. (invited review for a special issue)
39. Electronic Grade and Flexible Semiconductor Film Employing Oriented Attachment of Colloidal Ligand-Free PbS and PbSe Nanocrystals at Room Temperature
G. S. Shanker, A. Swarnkar, A. Chatterjee, S. Chakraborty, M. Phukan, N. Parveen, K. Biswas, A. Nag
Nanoscale 2015, 7, 9204.
38. Visible light-induced hydrogen generation using colloidal (ZnS)0.4(AgInS2)0.6nanocrystals capped by S2− ions
M. Jagadeeswararao, S. Dey, A. Nag , C. N. R. Rao
J. Mater. Chem. A, 2015, 3, 8276.
37. Doping Controls Plasmonics, Electrical Conductivity, and Carrier-Mediated Magnetic Coupling in Fe and Sn Codoped In2O3 Nanocrystals: Local Structure is the Key
G. S. Shanker, B. Tandon, T. Shibata, S. Chattopadhyay, A. Nag
2014
36. Inorganic Surface Ligands for Colloidal Nanomaterials
A. Nag, H. Zhang, E. Janke, D. V. Talapin
35. Multifunctional Sn- and Fe-Codoped In2O3 Colloidal Nanocrystals: Plasmonics and Magnetism
B. Tandon, G. S. Shanker, A. Nag
J. Phys. Chem. Lett. 2014, 5, 2306.
34. A microscopic description of the evolution of the local structure and an evaluation of the chemical pressure concept in a solid solution
S. Mukherjee, A. Nag, V. Kocevski, P. K. Santra, M. Balasubramanian, S. Chattopadhyay, T. Shibata, F. Schaefers, J. Rusz, C. Gerard, O. Eriksson, C.U. Segre, D. D. Sarma
Phys. Rev. B 2014, 89, 224105.
33. Seeded-Growth, Nanocrystal-Fusion, Ion-Exchange and Inorganic-Ligand Mediated Formation of Semiconductor Based Colloidal Heterostructured Nanocrystals
A. Nag, J. Kundu, A. Hazarika
CrystEngComm 2014, 16, 9391. (invited review article)
32. Organic-Free Colloidal Semiconductor Nanocrystals as Luminescent Sensors for Metal Ions and Nitroaromatic Explosives
A. Swarnkar, G. S. Shanker, A. Nag
31. Luminescence and Solar Cell from Ligand-Free Colloidal AgInS2 Nanocrystals
K. P Kadlag, P. Patil, M. Jagadeeswara Rao, S. Datta, A. Nag
CrystEngComm 2014, 16, 3605.
30. Origin of Photoluminescence and XAFS Study of (ZnS)1−x(AgInS2)x Nanocrystals
Jagadeeswara Rao, .T Shibata, S. Chattopadhyay, A. Nag
J. Phys. Chem. Lett. 2014, 5, 167.
2013
29. Ultranarrow and Widely Tunable Mn2+-Induced Photoluminescence from Single Mn-Doped Nanocrystals of Zn-CdS Alloys
A. Hazarika, A. Layek, S. De, A. Nag, S. Debnath, P. Mahadevan, A. Chowdhury, D. D. Sarma
Phys. Rev. Lett. 2013, 110, 267401.
28. Ligand-Free, Colloidal, and Luminescent Metal Sulfide Nanocrystals
K. P. Kadlag, M. Jagadeeswara Rao, A. Nag
J. Phys. Chem. Lett. 2013, 4, 1676.
27. X-ray Photoelectron Spectroscopy: A Unique Tool To Determine the Internal Heterostructure of nanoparticles
P. K. Santra, S. Mukherjee, A. Nag, D. D. Sarma
Chem. Mater. 2013, 25, 1222.
26. Interaction of CdSe and ZnO nanocrystals with electron-donor and -acceptor molecules
S. Dey, B. Das, R. Voggu, A. Nag, D.D. Sarma, C.N.R. Rao
Chem. Phys. Lett. 2013, 556, 200.
2010-2012
25. Effect of Metal Ions on Photoluminescence, Charge Transport, Magnetic and Catalytic Properties of All- Inorganic Colloidal Nanocrystals and Nanocrystal Solids
A. Nag, D. S. Chung, D. S. Dolzhnikov, N. M. Dimitrijevic, S. Chattopadhyay,T. Shibata, D. V. Talapin
J. Am. Chem. Soc. 2012, 134, 13604.
24. Low voltage, Hysteresis Free and High Mobility Transistors from All-Inorganic Colloidal Nanocrystals
D. S. Chung, J. S. Lee, J. Huang, A. Nag, S. Ithirria, D. V. Talapin
23. First principles study of the effect of organic ligands in the crystal structure of CdS Nanoparticles
K. V. Shanavas, S. M. Sharma, I. Dasgupta, A. Nag, A. Hazarika, D. D. Sarma
J. Phys. Chem. C 2012, 116, 6507.
22. Metal-Free Inorganic Ligands for Colloidal Nanocrystals: S2-, HS-, Se2-,HSe-, Te2-, HTe-,TeS32-, OH- and NH2-as Surface Ligands
A. Nag, M. V. Kovalenko, J. S. Lee, W. Liu, B. Spokoyny, D. V. Talapin
J. Am. Chem. Soc. 2011, 113, 10612.
21. Crystal Structure Engineering by Fine-Tuning the Surface Energy: The Case of CdE(E = S/Se)Nanocrystals
A. Nag, A. Hazarika, K. V. Shanavas, S. M. Sharma, I. Dasgupta, D. D. Sarma
J. Phys. Chem. Lett. 2011, 2, 706.
20. Size-Dependent Tuning of Mn2+ d-Emission in Mn2+-Doped CdS Nanocrystals
A. Nag, R. Cherian, P. Mahadevan, A. VenuGopal, A. Hazarika, A. Mohan, A. S. Vengurlekar, D. D. Sarma
J. Phys. Chem. C 2010, 114, 18323.
19. Graphene Analogue BCN: Femtosecond Nonlinear Optical Susceptibility and Hot Carrier Dynamics
S. Kumar, N. Kamaraju, K.S. Vasu, A. Nag, A.K. Sood, C.N.R. Rao
Chem. Phys. Lett. 2010, 499, 152.
18. Multiferroic and Magnetoelectric Properties of Core-Shell CoFe2O4@BaTiO3 Nanocomposites
K. Raidongia, A. Nag, A. Sundaresan, C. N. R. Rao
App. Phys. Lett. 2010, 97, 062904.
17. Blue-Light Emitting Graphene-Based Materials and Their Use in Generating White-Light
K. S. Subrahmanyam, P. Kumar, A. Nag, C. N. R. Rao
Solid State Commun. 2010, 150, 1774.
16. Origin of the Enhanced Photoluminescence from Semiconductor CdSeS Nanocrystals
A. Nag, P. K. Santra, A. Kumar, S. Sapra, P. Mahadevan, D. D. Sarma
J. Phys. Chem. Lett. 2010, 1, 2149.
15. Search for New Transparent Conductors: Effect of Ge Doping on the Conductivity of Ga2O3, In2O3 and Ga1.4In0.6O3
A. Nag, A. Shireen
Solid State Commun. 2010, 150, 1679.
14. Inorganic analogues of Graphene
A. Nag, C. N. R. Rao
Eur. J. Inorg. Chem. 2010, 2010, 4244.
13. Graphene Analogue of BN: Novel Synthesis and Properties
A. Nag, K. Raidongia, K. P. S. S. Hembram, U. V. Waghmare, R. Datta, C. N. R. Rao
ACS Nano 2010, 4, 1539.
12. BCN: A Graphene Analogue with Remarkable Adsorptive Properties
K. Raidongia, A. Nag, K. P. S. S. Hembram, U. V. Waghmare, R. Datta, C. N. R. Rao
Chem. Eur. J. 2010, 16, 149.
2005-2009
11. Solvothermal Synthesis of InP Quantum Dots
A. Nag, D. D. Sarma
J. Nanosci. Nanotech. 2009, 9, 5633.
10. To Dope Mn2+ in a Semiconducting Nanocrystal
A. Nag, S. Chakraborty, D. D. Sarma
J. Am. Chem. Soc. 2008, 130, 10605.
9. Optically Bi-functional Hetero-Structured Nanocrystals
A. Nag, A. Kumar, P. PremKiran, S. Chakraborty, G. R. Kumar, D. D. Sarma
J. Phys. Chem. C 2008, 112, 8229.
8. Luminescence in Mn Doped CdS Nanocrystals
A. Nag, S. Sapra, S. Gupta, A. Prakash, A. Ghangrekar, N. Periasamy, D. D. Sarma
Bull. Mater. Sci. 2008, 31, 561.
7. White Light from Mn2+- Doped CdS Nanocrystals: A New Approach
A. Nag, D.D. Sarma
J. Phys. Chem. C 2007, 111, 13641.
6. A Study of Mn2+ Doping in CdS Nanocrystals
A. Nag, S. Sapra, C. Nagamani, A. Sharma, N. Pradhan, S. V. Bhat, D. D. Sarma
5. Synthesis of CdSe Nanocrystals in a Noncoordinating Solvent: Effect of Reaction Temperature on Size and Optical Properties
A. Nag, S. Sapra, S. Chakraborty, S. Basu and D. D. Sarma
J. Nanosci. Nanotech. 2007, 7, 1965.
4. White-Light Emission from a Blend of CdSeS Nanocrystals of Different Se:S Ratio
M. Ali, S. Chattopadhyay, A. Nag, A. Kumar, S. Sapra, S. Chakraborty, D. D. Sarma
Nanotechnology 2007, 18, 075401.
3. Nonlinear Absorption of Ternary and Quaternary Semiconductor Nanocrystals
P. P. Kiran, D. More, A. Nag, A. Kumar, S. Sapra, D. D. Sarma, P. Ayyub, G. R. Kumar
Proceedings of Photonics 2006, 13 - 16 Dec, Hyderabad, India.
2. Synthesis and Characterization of Highly Luminescent CdSe and CdSeS Quantum Dots,
A. Nag, A. Kumar, S. Sapra, D. D. Sarma
Proceedings of the DAE Solid State Physics Symposium 2005, 50, 249, 5-9 Dec 2005, Mumbai, India.
1. Performing Chemical Reactions in Virtual Capillary of Surface Tension-Confined Microfluidic Devices
A. Nag, B. Panda, A. Chattopadhyay
Patent
Materials and Methods for the Preparation of Nanocomposites
A. Nag, D. V. Talapin US Patent (2014) 20,140,346,442